Главная
Регистрация
Вход

Суббота, 28.06.2025, 20:12
Приветствую Вас Гость | RSS
Меню сайта

Разделы новостей
Музыка [20]
Новинки музыки, сборники
Кино [21]
Новости мира [13]
Авто [6]
Софт [20]
Полезные программы
Видео [24]
Информация о фильме + возможность ознакомления
Игры [8]
Развлечения [6]
Биографии знаменитостей [4]

Наш опрос
Какой вид отдыха Вы предпочитаете?
Всего ответов: 177

Главная » 2008 » Ноябрь » 11 » Общее понятие балансового метода и принципиальная схема межотраслевого баланса + Сотрудничество с marke-web.ru
Общее понятие балансового метода и принципиальная схема межотраслевого баланса + Сотрудничество с marke-web.ru
19:41

Общее понятие балансового метода и принципиальная схема межотраслевого баланса

Статические и динамические балансовые модели широко применяются для математического моделирования экономических систем и процессов, в том числе и в задачах маркетинга. В основе этих моделей лежит балансовый метод, т.е. взаимное сопоставление имеющихся материальных, трудовых и финансовых ресурсов и потребностей в них. Таким образом, под балансовой моделью следует понимать систему уравнений, которые удовлетворяют следующему требованию: соответствие наличия ресурса и его использования. При этом соответствие понимается либо как равенство, либо менее жестко – как достаточность ресурсов для удовлетворения потребности и, следовательно, наличие некоторого резерва. 

Необходимо отметить, что балансовые модели носят, как правило, фактографический характер и не содержат какого-либо механизма сравнения отдельных вариантов экономических решений, что не позволяет сделать выбор оптимального развития экономической системы. Этим определяется ограниченность балансовых моделей и балансового метода в целом.

Балансовые модели относятся к матричным экономико-математическим моделям, в которых балансовый метод получает строгое математическое выражение. Такие модели объединяет не только общий формальный (матричный) принцип построения и единство системы расчетов, но и аналогичность экономических характеристик отдельных разделов. Это позволяет рассматривать структуру, содержание и основные зависимости матричных моделей на примере широко распространенной модели межотраслевого баланса (МОБ)
производства и распределения продукции в народном хозяйстве. Данный баланс отражает производство и распределение общественного продукта в отраслевом разрезе, межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода. 

Принципиальная схема МОБ производства и распределения совокупного общественного продукта в стоимостном выражении приведена в табл. 1 [1]. В основу схемы положено разделение совокупного продукта на две части: промежуточный и конечный продукт. Все народное хозяйство представлено в виде совокупности п отраслей (имеются в виду чистые отрасли), при этом каждая отрасль фигурирует в балансе как производящая и как потребляющая. 

Таблица 1
megotraslevogo


Первый квадрант МОБ – это прямоугольная таблица межотраслевых материальных связей. Показатели таблицы представляют собой величины прямых межотраслевых потоков продукции и обозначаются как хij, где i и j – соответственно номера производящих и потребляющих отраслей. Таким образом, этот квадрант имеет вид квадратной матрицы п, сумма всех элементов которой равна годовому фонду возмещения затрат средств производства в материальной сфере.

Во втором квадранте представлена конечная продукция всех отраслей, выходящая из сферы производства на потребление и накопление. В таблице этот раздел дан укрупненно – в виде одного столбца величин yi, но в развернутой схеме МОБ конечный продукт каждой отрасли дается дифференцированно по направлениям использования: на личное и общественное потребление, на накопление, экспорт и т.д. Следовательно, второй квадрант характеризует отраслевую материальную структуру национального дохода.

Третий квадрант МОБ также характеризует национальный доход, но со стороны его стоимостного состава, как сумму чистой продукции и амортизации; чистая продукция понимается при этом как сумма оплаты труда и чистого дохода отраслей. Сумму амортизации Cj и чистой продукции (Vj + mj) j-й отрасли будем называть условно чистой продукцией и обозначать в дальнейшем как Zj.

Четвертый квадрант, который находится на пересечении столбцов второго квадранта и строк третьего квадранта, отражает конечное формирование и использование национального дохода. Таким образом, общий итог этого квадранта, так же как второго и третьего, должен быть равен созданному за год национальному доходу.

Таким образом, в целом межотраслевой баланс в рамках единой модели объединяет балансы отраслей материального производства, баланс совокупного общественного продукта, балансы национального дохода, финансовый, баланс доходов и расходов населения [1]. Следует особо отметить, что хотя валовая продукция отраслей не входит в рассмотренные выше четыре квадранта, она представлена на принципиальной схеме МОБ в двух местах в виде столбца, расположенного справа от второго квадранта, и в виде строки ниже третьего квадранта. Эти столбец и строка валовой продукции замыкают схему МОБ и играют важную роль как для проверки правильности заполнения квадрантов (т.е. проверки самого баланса), так и для разработки экономико-математической модели межотраслевого баланса.

Для расчета стоимостного баланса, построенного по указанной схеме, применяется экономико-математическая модель, которая представляет собой систему линейных уравнений:


В матричной записи она выглядит еще компактнее:

        AX + Y = X,

где X — вектор-столбец объемов производства; Y — то же конечного продукта; A = [aij] — матрица коэффициентов прямых затрат. Эту систему принято называть уравнением Леонтьева.

Решение системы относительно X позволяет выявить объем продукции каждой отрасли, необходимой для получения запланированного количества конечной продукции (Y), или, наоборот, определить конечный продукт по данным о валовом продукте. Как видим, принимается ли в уравнении за неизвестное X или Y, зависит от постановки задачи. Процесс ее решения связан с расчетом коэффициентов полных затрат (bij) продукции i-й отрасли на единицу продукции j-й отрасли [2].

Включив их в указанное выше уравнение, преобразуем его в следующее:


или в матричной форме: X = BY. Таким образом, получим решение относительно X. Если известны коэффициенты bij, можно делать расчеты различных вариантов планового или прогнозного баланса, исходя из заданного количества конечного продукта общественного производства. Выбор из ряда вариантов МОБ на плановый (прогнозный) период одного "лучшего” в принципе позволил бы оптимизировать план (прогноз), однако методы оптимизации МОБ недостаточно разработаны [2].

Балансовые модели могут быть полезны и при реализации сбытовой функции маркетинга, в частности в вопросах ценообразования. В условиях формирования рыночных цен они помогают выявить, например, дисбаланс межотраслевых и внутриотраслевых цен при свободном рыночном ценообразовании [3]

Кроме определения системы цен по формуле стоимости на базе уравнений межотраслевого баланса можно рассчитывать новые перспективные цены и индексы их динамики в сравнении с уровнями базисного года [3].

Используемая литература: 

1) "Экономико-математические методы и прикладные модели" под редакцией В.В. Федосеева - Учебное пособие для вузов - 2-е изд. М.: ЮНИТИ-ДАНА, 2005 - Гл. 6

2) Леонтьев В. "Межотраслевая экономика" / Серия "Экономисты— лауреаты Нобелевской
премии". М.: Экономика, 1997.

3) Ким И.А. "Построение межотраслевых балансов РФ: методика и построение" - Экономический журнал ГУ-ВШЭ - 2006 - стр. 80-96

Выложено по просьбе Astaldo, при сотрудничестве с marke-web.ru

.
Форма входа

Реклама на сайте
Сайт для людей, которые думают. Заходите. Важен каждый посетитель!

Поиск

Статистика


Copyright MyCorp © 2025